4/4 B.Tech. EIGHTH SEMESTER

ME8T2D FLEXIBLE MANUFACTURING SYSTEMS & GROUP TECHNOLOGY Credits: 4

Lecture:- 4 periods/week Internal assessment: 30marks
Tutorial: -- Semester end examination: 70 marks

Objectives:

- 1. Demonstrate the components and need of FMS in modern manufacturing
- 2. Get the knowledge of applying FMS in industries
- 3. Classify the parts according coding system
- 4. Get the skill of modeling and design for critical systems

Learning outcomes:

At the end of course the students will be able to:

- 1. Describe the Structure of FMS and workstation for inspection
- 2. Explain the concepts of advanced material handling storage system
- 3. Analyze the various levels of FMS control systems
- 4. Describe different types of coding system in Group technology (GT)
- 5. Identify applications of GT in different complex systems

Prerequisites:

CAD/CAM

UNIT - I

INTRODUCTION:

Manufacturing Automation, Need of flexibility, Concept of flexibility, Definition and types of FMS, Architecture of FMS, Work piece flow in FMS, Performance measures of FMS.**WORK STATION:** CNC Machines, Machine Centers, Inspection Stations

UNIT - II

AUTOMATED MATERIAL HANDLING:

Function of MHS, Types of Material handling equipment, Conveyor systems, AGVs, Industrial Robots.

AUTOMATED STORAGE SYSTEMS: Characteristics of Storage Systems.

UNIT - III

AUTOMATED INSPECTION SYSTEMS:

In-process gauging, Coordinate measuring Machines – principle, construction, types of structure and their applications; Probes – various shapes, sizes and applications, operation and programming of CMMs

UNIT - IV

COMPUTER CONTROL SYSTEM OF FMS:

Functions of Computer, Control system architecture, Factory level, Cell level control systems, Equipment control systems, Factory communications, Local area networks, Data files and system reports.

UNIT-V

FMS PLANNING:

short term planning problems, Loading models in FMS, Production planning model for an FMS, FMS control, FMS planning and control,

UNIT-VI

GROUP TECHNOLOGY:

Introduction, part families ,need of G.T. Part families, Methods for developing part families

UNIT-VII

BASIC TYPE OF CODES:

Hierarchical codes, Attribute code, Hybrid code, selecting a coding system, Developing a coding system in an industry, examples of coding systems, MICLASS, OPITZ, CODE systems.

UNIT-VIII

FACILITY DESIGN USING GT:

Introduction, economic modeling in GT environment – production planning cost model, Economics of GT, Application of GT for design retrieval, CAPP, NIC, MR and FMS.

Learning resources

Text book:

 Automation & Production Systems and Computer Integrated Manufacturing, by M.P.Groover, Prentice Hall,2007

Reference books:

- **1.** Performance Modeling of Automated Manufacturing Systems, by N.Viswanadham, Y.Narahari, Prentice Hall,1992.
- 2. CAD/CAM Handbook, by Eric Teichloz ,McGraw-Hill,1985.
- 3. Computer Integrated Design and Manufacturing, Bedworth Henderson,, McGraw- Hill,1991.